

FPIX - Electronics

Steve Schnetzer Rutgers University

Director's Review

November 1, 2002

Response to Recommendation 1

TBM

DMILL chip has been fully tested:

- works completely as designed at full 40 MHz
 - → 6 Tested / 5 Fully Functional
- power consumption 600 mW
 - \rightarrow core 140 mW
 - → LVDS driver 460 mW

Translation to 0.25 micron started:

- follow PSI schedule for ROC
 - → 1st submission Feb. '03
 - → 2nd "final" submission Oct. '03
 - → delivery of "final" chip end of '03

Response to Recommendation 1

TBM

Resources:

Ed Bartz full time on TBM for next 12 months
 Exception: Ed will work on FEC between
 submission and delivery of 1st prototype

Concerns:

- coupling of submission schedule to PSI
 - → commits to 5-layer IBM process via CERN
 - → if 3rd submission needed must be engineering run CERN multiproject submissions are 3-layers

3rd submission could be part of production!

Response to Recommendation 2 System Tests

DMILL Plaquette (1x5, 2x5) without sensors

FEC (Version 1) / DMILL TBM / VHDI (DMILL) / PSI43 ROC developments needed: None

 \Rightarrow end of '02

DMILL Plaquette (1x5, 2x5) with sensors

FEC (Version 1) / DMILL TBM / VHDI (DMILL) / PSI43 ROC developments needed: bump bonded sensors

 \Rightarrow Spring of '02

0.25 μm Plaquette

FEC (Version 2) / PGA TBM / VHDI (0.25 μ m) / 0.25 μ m ROC developments needed: 0.25 μ m ROC, VHDI (0.25 μ m)

 \Rightarrow Fall of '03

Response to Recommendation 2

System Tests

```
Panel (one side of blade)

FEC (Version 2) / HDI / 0.25 μm TBM / VHDI / ROC developments needed: HDI / 0.25 μm TBM

⇒ end of '03

Blade

FEC (Version 3) / HDI / TBM / VHDI / ROC / FED developments needed: FEC (version 3) / FED
```

Multiple (3) Blades

```
FEC (Version 3) / HDI / TBM / VHDI / ROC / Port Card developments needed: Port Card
```

 \Rightarrow End of '04

⇒ Summer of '04

Port Card

Problems with Port Card at Detector:

- not enough space for opto-hybrids
- opto-hybrids introduce extra connectors

Possible solution:

- mount optical components directly of Port Card
 - → large engineering effort (not enough resources)
- ⇒ Move Port Card to Service Cylinder

Port Card

Disadvantages:

- need up to 50 cm pigtail
- need control link splitter

needed for barrel anyway

Advantages:

- more space for port card
- material moved out to larger η
- opens up option for 6 blades per link

Slides 9 – 16 are Supplemental

1 MHz Trigger Rate

Expected Max CMS Trigger Rate = 100KHz

TBM Test Results

- Header marker 3 "UBLK" + "1"
 - -8 Bit Event Number (4 Clocks)
- Trailer marker 2 "UBLK" + 2 "1"
 - -8 Bit Status Word (4 Clocks)

Analog Level Discrimination

Level Separation:

- UBlk ↔ Level_0 550 Cts
- Adjacent Levels 215 Cts

•Noise:

- Ublk s = 1.29 Cts
- Level s = 2.78 Cts

 \underline{s} = 1.3 % Level Sep.

(Based on 5000 Headers)

Single Pixel Calibration Pulse

slide 12

Old Port Card Concept

- Multi-layer board
- Located at outer radius of disks
- 1 Port Card for 3 blades

(8 Port Cards / disk)

- Distributes power to blades
- Houses
 - lasers and laser driver chips
 - 6 analog lasers
 - 1 control network laser
 - photodiodes and receiver chips
 - 2 control network photodiodes

Port Card concept

- folds around cooling fin
 - $\bullet \ \, \mathsf{green} \to \mathsf{rigid}$
 - red \rightarrow flex

slide 13

Opto-Hybrids

Analog hybrid

Port Card using CERN Opto-hybrid

Port Card with Components Individually Mounted

